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Fig. t—Accuracy graph of the approximate
formulas for zp,s with s =1.
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Fig. 2—Accuracy graph of the approximate
formula for zp,s’ with =0, 1, and 3.

Setting S=1in (4) gives Gunston's result.
It is known, though, that for given p, the
roots of (1) and (2) do not coincide so it
would be helpful if our simple formulas ex-
hibited this difference. Using the full right-
hand side of (3) above does yield dissimilar,
but rather complex, results. By retaining
only the most essential terms, however, these
expressions can be approximately reduced to
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For large S or small (¢—1) these formulas
give rise to the leading terms in the asymp-
totic expansions of McMahon and Buch-
holz, and consequently the expressions of
(5) become increasingly more accurate in
these regions.

Following Gunston, accuracy graphs
may be roughly constructed for the above
simple approximate formulas. For values of
(k, p) lying below the curves of Fig. 1 the
formulas of (4) and (5) for 3,,1 are within +1
per cent of the exact value. Fig. 2 shows sim-
ilar curves for z’p.0, 5'p.1, and 25,5 from (5).

Correspondence

It is unfortunate that known existing
data (see Waldron® and Fletcher, et al.8) does
not permit us toreadily compare carefully the
approximate with the exact roots for a wider
range of values of (k, p). In particular, the
precise general accuracy of the expressions
for z,,5 of either (4) or (5) is somewhat un-
certain for moderate p and k, say 1<p<3
and 2>3, and the situation is therefore not
quite as depicted in Fig. 1 of Gunston.!?
Nevertheless, it is hoped that the two figures
presented here do serve to illustrate the gen-
eral regions of applicability of the formulas
of (4) and (5) as either reasonable approxi-
mate values of the roots in question, or as
initial approximations in computational
schemes for the zeros of these important
combinations of Bessel functions.

J. A. CocHRrRAN
Bell Telephone Labs., Inc.
Whippany, N. J.

8 A. Fletcher, e al., “An Index of Mathematical
Tables,” Addison-Wesley, Reading, Mass., 2nd ed.,
vol. 1, pp. 413, 414, 416; 1962,

9 For instance, the inmaccuracy of Gunston’s for-
mula for p =5/2,k =3,4, or 5 is of theorder of 2 0r 3
per cent rather than less than 1.5 per cent as his figure
indicates.

Transmission Line Measurement
of Narrow Linewidth Ferromagnetic
Samples™

Measurement of ferromagnetic resonance
linewidths over a range of microwave fre-
quencies is facilitated by the use of a non-
resonant waveguide system. The loading ef-
fect encountered in such a transmission line
svstem, however, becomes significant when
the linewidth is less than a few tens of
oersteds. The effect of transmission line

(6‘11 - 822*) -+ (311 -+ 322*)5
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THREE-PORT JUNCTION

e PORT NO 2

7
£pORT NO. 3

Fig. 1—Schematic view of the test section.

surrounds the test sample. The treatment of
this problem is simplified by including only
one mode of propagation at port No. 3. This
propagating mode is closely related to the
radiation field associated with the resonant
mode of the sample.

It is necessary to consider the properties
of the test section in terms of the signals
observable at ports Nos. 1 and 2 alone. The
only dissipative element in this system is the
load at port No. 3. The reflection coefficient
of the load at port No. 3 is written in im-
pedance form for convenience, (1 —5)/(1+3).
If first order perturbation theory can be
used to describe a magnetic sample in the
waveguide the impedance is proportional to
the susceptibility.

In order to describe this three-port
junction in matrix formalism, it is sufficient
to identify the ports with elements of a
column matrix, the amplitude and phase at
each port being represented by a correspond-
ing element. The scattered waves, also de-
scribed by a column matrix, are related to
the incident waves by a square matrix.
Terminating the third port of the network
by a reflective load reduces the order of
system. The resultant two-port junction is
described by a 2X2 matrix T, given in (1),
which is not, in general, a unitary matrix.

(512 -+ s20*) + (512 = s:®)z

T = (1 — ss) + (1 5 ss2)3
(s21 + $12%) + ($21 — $12™)%

(1 —s0)+ Q10+ 533)%

. 1
(s22 — s11%) + (520 + su®)s W

1- s33) + 1+ $33)2

loading was avoided by the use of an auto-
matic compensation network.

An idealized model of the experimental
system is illustrated in Fig. 1. Scattering-
matrix theory is applied to the junction that
is inside the balloon-like simply connected
region. The test sample is placed topo-
logically outside the junction by means of a
connecting tube. If the radius of the con-
necting tube is small enough, the tube itself
will not be significant and we have a three-
port function which fits the usual simplify-
ing assumptions of scattering matrix theory.
Ports Nos. 1 and 2 are terminals of wave-
guide in which only the dominant mode is
propagating. Port No. 3 is the surface which

#* Received July 1, 1963.

a- s39) -+ 1+ S33)%

The impedance at the third port appears in
the reduced matrix T in the numerator of
each term and in the common denominator
of the entire matrix. A resonant condition is
described by this matrix if the denominator
vanishes. This, however, represents decou-
pling of thethird portfromall other portsand
is of no interest in this study. The complex
conjugate form arises because .S is a unitary
matrix; the form written here is for +1 value
of the determinant of .S.

Tt is useful to note at this point that: 1)
Since signal is applied at one port only, the
transmitted and reflected signals are the
most easily observed quantities. 2) Since
the sample has a narrow linewidth, the con-
dition =0 can be used for a convenient
reference, the measurement being made far
from resonance.
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The measured amplitudes of the reflected
and transmitted signals are proportional to
the amplitude of the matrix elements in the
first column of the matrix. Linear combina-
tion of the incident and reflected signalsin a
bridge circuit makes it possible to generate
a signal with similar form for which the
values of the constants are adjustable. If
the bridge is balanced off resonance, that is
with z=0, the constant in the numerator
drops out.

The term (1-+sg3) in the denominator
represents the observed line broadening as-
sociated with the radiation of energy from
the sample. If the (1+s;3) term is not negli-
gible, the observations of linewidth are made
difficult by the influence of the coupling of
the sample to the waveguide. It is possible
for the coupling to be large enough to make
precision linewidth measurements a prac-
tical impossibility. One method of eliminat-
ing this difficulty is to use the transmitted
signal as the reference throughout the ex-
periment. This can be accomplished by ap-
propriately adjusting the incident amplitude.
The reflected signal R is the ratio of the
terms in the first column of the matrix (1).

_ (511 — $22%) 4 (501 + $22)2 .
(Sn + 812*) + (521 - 6‘12*)2

The constant, (si11—s22¥), in the numerator
drops out when the bridge is balanced far
off resonance since R must then be zero. The
denominator term (s —s12*) is of special
interest since this term vanishes if two re-
strictions are applied to the original S
matrix. The first is that the matrix be sym-
metric. This is easily fulfilled and tested
physically since this is identical to the re-
quirement of reciprocal coupling. It is possi-
ble to test this in a magnetic resonance ex-
periment by reversing the magnetic field and
observing the reciprocity of the resonant
properties.

The other condition requires that the
three-port matrix .S be one in which, by ad-
justing only the phase reference at the ex-
ternal ports, it is possible simultaneously to
obtain real, positive values for both the
determinant of the .S matrix and the matrix
component sg;. In a physical analysis, this is
equivalent to the removal of wall effects, or
to the condition that there is no shift of the
resonant frequency due to coupling of the
waveguide system. A {requency shift can be
associated with a reaction loading by the
transmission line. Only if the reactive loading
is kept small will we be able to compensate
for the resistive loading effect by the wave-
guide system.

@

513+ $20*
= —— .
so1 + s10*

The final form of the reflected signal (3)
is obtained by applying these requirements;
the system 1is reciprocally coupled, the
bridge is balanced off resonance so that
z =0, the transmitted signal is held constant,
and the sample is not located near the wave-
guide wall. Since R is proportional to z, the
observed linewidth of R is likewise the in-
trinsic linewidth of the sample.

The dependence of the apparent line-
width upon an error in satisfying the rec-

3
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iprocity condition was tested experi-
mentally. The linewidth of the reflected
signal did vary somewhat with change in
position of the sample in the waveguide;
however, there was no pronounced sensitivity
in the observed linewidth. The precision to
which the reciprocity condition could be
satisfied was sufficient to warrant use of this
system. The final system error was much
greater than the residual error associated
with position error.

The microwave bridge circuit used to ob-
serve the resonance linewidth is shown in
Fig. 2. The klystron stabilization held the
signal frequency to a preset value with
only a small residual frequency modulation.
The reference and reflection signal branches
were coupled to the main branch through
10-db and 3-db directional couplers, respec-
tively, and were mixed for bridge operation
in the 3-db coupler. The modulation servo-
amplifier allowed for automatic compensa-
tion for transmission line loading upon the
resonant sample. The test section shown in
Fig. 3 was constructed of RG 52/U wave-
guide.

LABoRATORT MAGNET

supcizen
uvstROR

Fig. 2—Block diagram of the measurement system.

Fig. 3—Photograph of the test section with
sample holder in place,

The reflection bridge was balanced by
adjustment of the phase shift and attenua-
tion on the reference arm. Measurements
were made by observing the magnetic field
difference corresponding to the 3-db re-
sponse width of the reflection bridge signal.
The magnetic field was measured with suit-
able precision using a nuclear magnetic
resonance gaussmeter and a frequency
counter for narrow linewidths. For narrow
linewidths the final precision was =£0.02
oersted.

GEORGE R. JONEsS
Harry Diamond Lab.
Washington, D. C.
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A Note on Strip-Line Band-Stop
Filters with Narrow Stop Bands*

Design criteria for band-stop filters hav-
ing bandwidths up to few per cent have been
presented by Young, Matthaei, and Jones.
The purpose of this correspondence is to ex-
tend their work to include a new type of
strip-line resonator which is easier to con-
struct and adjust, and also permits the ap-
plication of printed circuit fabrication.

Fig. 1 shows the basic structure of the
band-stop filter to be considered correspond-
ing to Fig. (3a) of the paper by Young,
et al.t Fig. 2 shows a schematic of how the
circuit of Fig. 1 may be realized in practice
corresponding to Fig. 5 of the cited reference.
However, resonant circuits of the type
shown require considerable care in adjust-
ment as noted by the design example given
by Young, ¢t al. The major difficulties are in
determining the gap spacing required to ob-
tain the proper value of resonator capaci-
tance and in establishing the reference planes
for the stub lengths. The type of resonator
shown in Fig. 3 and which is the subject of

Fig. 1—Quarter wave coupled shunt resonator
band-stop filter.
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Fig. 2—Physical center conductor geometry
for strip-line filter.
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Fig. 3—Parallel coupled line resonator.

this note will eliminate these difficulties.
The only adjustment required is the posi-
tion of the short circuit which is made
necessary to compensate for the mitered
corners, Only the case where all transmission
lines have equal characteristic impedances is
considered. This limits the design criteria to
applications where a maximum flat response
or Tchebyscheff response with an odd num-
ber of resonators is desired. The extension
to the general case is readily accomplished,
but will not be considered here.

# Received July 17, 1963, Based on part of the re-
search work undertaken by Robert Dean Standley in
partial fulfillment of the requirements for the Ph.D,
degree at Illinois Institute of Technology, Chicago, 111

. 1L. Young, ¢t al., “Microwave band-stop filters
with narrow stop bands,” IEEE Trans. oN MICRO-
WAVE THEORY AND TECHNIQUES, vol. MTT-10, pp.
416-428; November, 1962.



