

Fig. 1—Accuracy graph of the approximate formulas for $z_{p,s}$ with $s=1$.

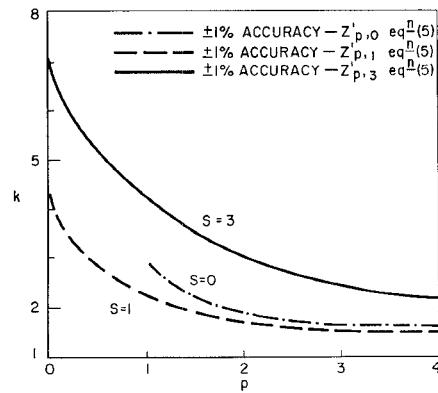


Fig. 2—Accuracy graph of the approximate formula for $z'_{p,s}$ with $s=0, 1$, and 3 .

Setting $S=1$ in (4) gives Gunston's result.

It is known, though, that for given p , the roots of (1) and (2) do not coincide so it would be helpful if our simple formulas exhibited this difference. Using the full right-hand side of (3) above does yield dissimilar, but rather complex, results. By retaining only the most essential terms, however, these expressions can be approximately reduced to

$$\begin{aligned} z_{p,s} &\approx \sqrt{\frac{(S\pi)^2}{(k-1)^2} + \frac{4p^2 - 1}{(k+1)^2}} \\ z'_{p,s} &\approx \sqrt{\frac{(S\pi)^2}{(k-1)^2} + \frac{4p^2 + 3}{(k+1)^2}} \\ &\quad (S = 1, 2, 3, \dots) \\ z'_{p,0} &\approx \frac{2p}{(k+1)} \left[\frac{1 + (k-1)^2}{6(k+1)^2} \right]. \quad (5) \end{aligned}$$

For large S or small $(k-1)$ these formulas give rise to the leading terms in the asymptotic expansions of McMahon and Buchholz, and consequently the expressions of (5) become increasingly more accurate in these regions.

Following Gunston, accuracy graphs may be roughly constructed for the above simple approximate formulas. For values of (k, p) lying below the curves of Fig. 1 the formulas of (4) and (5) for $z_{p,1}$ are within ± 1 per cent of the exact value. Fig. 2 shows similar curves for $z'_{p,0}$, $z'_{p,1}$, and $z'_{p,3}$ from (5).

It is unfortunate that known existing data (see Waldron⁵ and Fletcher, *et al.*⁶) does not permit us to readily compare *carefully* the approximate with the exact roots for a wider range of values of (k, p) . In particular, the precise general accuracy of the expressions for $z_{p,s}$ of either (4) or (5) is somewhat uncertain for moderate p and k , say $1 < p < 3$ and $k > 3$, and the situation is therefore not quite as depicted in Fig. 1 of Gunston.^{1,9} Nevertheless, it is hoped that the two figures presented here do serve to illustrate the general regions of applicability of the formulas of (4) and (5) as either reasonable approximate values of the roots in question, or as initial approximations in computational schemes for the zeros of these important combinations of Bessel functions.

J. A. COCHRAN
Bell Telephone Labs., Inc.
Whippany, N. J.

⁵ A. Fletcher, *et al.*, "An Index of Mathematical Tables," Addison-Wesley, Reading, Mass., 2nd ed., vol. 1, pp. 413, 414, 416; 1962.

⁶ For instance, the inaccuracy of Gunston's formula for $p=5/2$, $k=3, 4$, or 5 is of the order of 2 or 3 per cent rather than less than 1.5 per cent as his figure indicates.

THREE-PORT JUNCTION

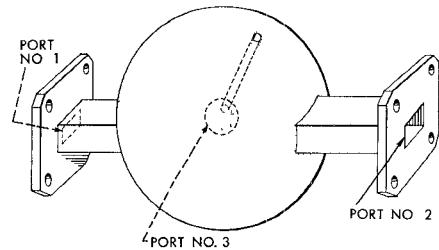


Fig. 1—Schematic view of the test section.

surrounds the test sample. The treatment of this problem is simplified by including only one mode of propagation at port No. 3. This propagating mode is closely related to the radiation field associated with the resonant mode of the sample.

It is necessary to consider the properties of the test section in terms of the signals observable at ports Nos. 1 and 2 alone. The only dissipative element in this system is the load at port No. 3. The reflection coefficient of the load at port No. 3 is written in impedance form for convenience, $(1-z)/(1+z)$. If first order perturbation theory can be used to describe a magnetic sample in the waveguide the impedance is proportional to the susceptibility.

In order to describe this three-port junction in matrix formalism, it is sufficient to identify the ports with elements of a column matrix, the amplitude and phase at each port being represented by a corresponding element. The scattered waves, also described by a column matrix, are related to the incident waves by a square matrix. Terminating the third port of the network by a reflective load reduces the order of system. The resultant two-port junction is described by a 2×2 matrix T , given in (1), which is not, in general, a unitary matrix.

$$T = \begin{bmatrix} (s_{11} - s_{22}^*) + (s_{11} + s_{22}^*)z & (s_{12} + s_{21}^*) + (s_{12} - s_{21}^*)z \\ (1 - s_{33}) + (1 + s_{33})z & (1 - s_{33}) + (1 + s_{33})z \\ (s_{21} + s_{12}^*) + (s_{21} - s_{12}^*)z & (s_{22} - s_{11}^*) + (s_{22} + s_{11}^*)z \\ (1 - s_{33}) + (1 + s_{33})z & (1 - s_{33}) + (1 + s_{33})z \end{bmatrix}. \quad (1)$$

loading was avoided by the use of an automatic compensation network.

An idealized model of the experimental system is illustrated in Fig. 1. Scattering-matrix theory is applied to the junction that is inside the balloon-like simply connected region. The test sample is placed topologically outside the junction by means of a connecting tube. If the radius of the connecting tube is small enough, the tube itself will not be significant and we have a three-port function which fits the usual simplifying assumptions of scattering matrix theory. Ports Nos. 1 and 2 are terminals of waveguide in which only the dominant mode is propagating. Port No. 3 is the surface which

The impedance at the third port appears in the reduced matrix T in the numerator of each term and in the common denominator of the entire matrix. A resonant condition is described by this matrix if the denominator vanishes. This, however, represents decoupling of the third port from all other ports and is of no interest in this study. The complex conjugate form arises because S is a unitary matrix; the form written here is for $+1$ value of the determinant of S .

It is useful to note at this point that: 1) Since signal is applied at one port only, the transmitted and reflected signals are the most easily observed quantities. 2) Since the sample has a narrow linewidth, the condition $z=0$ can be used for a convenient reference, the measurement being made far from resonance.

* Received July 1, 1963.

